basic bundle theory and k cohomology invariants lecture notes in physics

Download Book Basic Bundle Theory And K Cohomology Invariants Lecture Notes In Physics in PDF format. You can Read Online Basic Bundle Theory And K Cohomology Invariants Lecture Notes In Physics here in PDF, EPUB, Mobi or Docx formats.

Basic Bundle Theory And K Cohomology Invariants

Author : Dale Husemöller
ISBN : 9783540749554
Genre : Mathematics
File Size : 80. 25 MB
Format : PDF, ePub, Docs
Download : 100
Read : 420

Download Now

Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.

Fibre Bundles

Author : D. Husemöller
ISBN : 9781475740080
Genre : Mathematics
File Size : 90. 74 MB
Format : PDF, Docs
Download : 116
Read : 421

Download Now

A Mathematical Introduction To Conformal Field Theory

Author : Martin Schottenloher
ISBN : 9783540686255
Genre : Science
File Size : 90. 4 MB
Format : PDF, Kindle
Download : 733
Read : 209

Download Now

The first part of this book gives a self-contained and mathematically rigorous exposition of classical conformal symmetry in n dimensions and its quantization in two dimensions. The second part surveys some more advanced topics of conformal field theory.

Novikov Conjectures Index Theorems And Rigidity Volume 1

Author : Steven C. Ferry
ISBN : 0521497965
Genre : Mathematics
File Size : 71. 59 MB
Format : PDF
Download : 802
Read : 905

Download Now

The Novikov conjecture is the single most important unsolved problem in the topology of high-dimensional non-simply connected manifolds. These two volumes give a snapshot of the status of work on the Novikov conjecture and related topics from many points of view: geometric topology, homotopy theory, algebra, geometry, and analysis. Volume 1 contains a detailed historical survey and bibliography of the Novikov conjecture and of related subsequent developments, including an annotated reprint (both in the original Russian and in English translation) of Novikov's original 1970 statement of his conjecture; an annotated problem list; the texts of several important unpublished classic papers by Milnor, Browder, and Kasparov; and research/survey papers on the Novikov conjecture by Ferry/Weinberger, Gromov, Mishchenko, Quinn, Ranicki, and Rosenberg. Volume 2 contains fundamental long research papers by G. Carlsson on "Bounded K-theory and the assembly map in algebraic K-theory" and by S. Ferry and E. Pedersen on "Epsilon surgery theory"; and shorter research and survey papers on various topics related to the Novikov conjecture, by Bekka, Cherix, Valette, Eichhorn, and others. These volumes will appeal to researchers interested in learning more about this intriguing area.

K Theory

Author : Michael Atiyah
ISBN : 9780429973178
Genre : Mathematics
File Size : 64. 78 MB
Format : PDF, ePub, Mobi
Download : 695
Read : 1113

Download Now

These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.

Algebraic And Geometric Surgery

Author : Andrew Ranicki
ISBN : 0198509243
Genre : Mathematics
File Size : 42. 66 MB
Format : PDF, Kindle
Download : 630
Read : 744

Download Now

'An excellent framework for various courses in Surgery Theory... very readable... I read this fine and carefully written book with great pleasure, and highly recommend it for everyone who wants to undertake a deeper study of Surgery Theory and its Applications.' -Alberto Cavicchioli (Modena), Zentralblatt MATHThis book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, cobordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.

Lecture Notes In Algebraic Topology

Author : James Frederic Davis
ISBN : 9780821821602
Genre : Mathematics
File Size : 41. 32 MB
Format : PDF, Mobi
Download : 860
Read : 1254

Download Now

The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the ``big picture'', teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

Characteristic Classes Am 76

Author : John Milnor
ISBN : 9781400881826
Genre : Mathematics
File Size : 46. 25 MB
Format : PDF, Docs
Download : 494
Read : 695

Download Now

The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.

The K Book

Author : Charles A. Weibel
ISBN : 9780821891322
Genre : Mathematics
File Size : 77. 31 MB
Format : PDF, Mobi
Download : 396
Read : 269

Download Now

Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr

Topology And Geometry For Physicists

Author : Charles Nash
ISBN : 9780486318363
Genre : Mathematics
File Size : 31. 99 MB
Format : PDF, Kindle
Download : 529
Read : 543

Download Now

Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. "Thoroughly recommended" by The Physics Bulletin, this volume's physics applications range from condensed matter physics and statistical mechanics to elementary particle theory. Its main mathematical topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory.

Top Download:

Best Books