knots mathematics with a twist

Download Book Knots Mathematics With A Twist in PDF format. You can Read Online Knots Mathematics With A Twist here in PDF, EPUB, Mobi or Docx formats.

Knots

Author : A. B. Sossinsky
ISBN : 0674009444
Genre : Mathematics
File Size : 34. 44 MB
Format : PDF, Mobi
Download : 765
Read : 916

Download Now


This book, written by a mathematician known for his own work on knot theory, is a clear, concise, and engaging introduction to this complicated subject, and a guide to the basic ideas and applications of knot theory. 63 illustrations.

The Knot Book

Author : Colin Conrad Adams
ISBN : 9780821836781
Genre : Mathematics
File Size : 41. 34 MB
Format : PDF
Download : 458
Read : 623

Download Now


Knots are familiar objects. We use them to moor our boats, to wrap our packages, to tie our shoes. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. The Knot Book is an introduction to this rich theory, starting from our familiar understanding of knots and a bit of college algebra and finishing with exciting topics of current research. The Knot Book is also about the excitement of doing mathematics. Colin Adams engages the reader with fascinating examples, superb figures, and thought-provoking ideas. He also presents the remarkable applications of knot theory to modern chemistry, biology, and physics. This is a compelling book that will comfortably escort you into the marvelous world of knot theory. Whether you are a mathematics student, someone working in a related field, or an amateur mathematician, you will find much of interest in The Knot Book.

Knots And Links

Author : Dale Rolfsen
ISBN : 9780821834367
Genre : Mathematics
File Size : 90. 52 MB
Format : PDF, ePub, Docs
Download : 786
Read : 1326

Download Now


Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book"".

Handbook Of Knot Theory

Author : William Menasco
ISBN : 0080459544
Genre : Mathematics
File Size : 90. 80 MB
Format : PDF, Docs
Download : 878
Read : 774

Download Now


This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry. * Survey of mathematical knot theory * Articles by leading world authorities * Clear exposition, not over-technical * Accessible to readers with undergraduate background in mathematics

Knot Theory And Its Applications

Author : Kunio Murasugi
ISBN : 9780817647193
Genre : Mathematics
File Size : 82. 8 MB
Format : PDF, ePub, Mobi
Download : 237
Read : 423

Download Now


This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials. It also covers more recent developments and special topics, such as chord diagrams and covering spaces. The author avoids advanced mathematical terminology and intricate techniques in algebraic topology and group theory. Numerous diagrams and exercises help readers understand and apply the theory. Each chapter includes a supplement with interesting historical and mathematical comments.

Knots Links Braids And 3 Manifolds

Author : V. V. Prasolov
ISBN : 9780821808986
Genre : Science
File Size : 63. 6 MB
Format : PDF, Mobi
Download : 609
Read : 761

Download Now


This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. It emphasizes the geometric aspects of the theory and treats topics such as braids, homeomorphisms of surfaces, surgery of 3-manifolds (Kirby calculus), and branched coverings. This attractive geometric material, interesting in itself yet not previously gathered in book form, constitutes the basis of the last two chapters, where the Jones-Witten invariants are constructed via the rigorous skein algebra approach (mainly due to the Saint Petersburg school). Unlike several recent monographs, where all of these invariants are introduced by using the sophisticated abstract algebra of quantum groups and representation theory, the mathematical prerequisites are minimal in this book. Numerous figures and problems make it suitable as a course text and for self-study.

The Mathematics Of Knots

Author : Markus Banagl
ISBN : 3642156371
Genre : Mathematics
File Size : 51. 96 MB
Format : PDF, ePub, Docs
Download : 397
Read : 849

Download Now


The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands.

Knots And Physics

Author : Louis H Kauffman
ISBN : 9789814494090
Genre : Mathematics
File Size : 77. 33 MB
Format : PDF
Download : 853
Read : 776

Download Now


This invaluable book is an introduction to knot and link invariants as generalised amplitudes for a quasi-physical process. The demands of knot theory, coupled with a quantum-statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This stance has the advantage of providing direct access to the algebra and to the combinatorial topology, as well as physical ideas. The book is divided into two parts: Part I is a systematic course on knots and physics starting from the ground up, and Part II is a set of lectures on various topics related to Part I. Part II includes topics such as frictional properties of knots, relations with combinatorics, and knots in dynamical systems. In this third edition, a paper by the author entitled “Knot Theory and Functional Integration” has been added. This paper shows how the Kontsevich integral approach to the Vassiliev invariants is directly related to the perturbative expansion of Witten's functional integral. While the book supplies the background, this paper can be read independently as an introduction to quantum field theory and knot invariants and their relation to quantum gravity. As in the second edition, there is a selection of papers by the author at the end of the book. Numerous clarifying remarks have been added to the text. Contents:Physical KnotsStates and the Bracket PolynomialThe Jones Polynomial and Its GeneralizationsBraids and the Jones PolynomialFormal Feynman Diagrams, Bracket as a Vacuum-Vacuum Expectation and the Quantum Group SL(2)qYang-Baxter Models for Specializations of the Homfly PolynomialKnot-Crystals — Classical Knot Theory in a Modern GuiseThe Kauffman PolynomialThree Manifold Invariants from the Jones PolynomialIntegral Heuristics and Witten's InvariantsThe Chromatic PolynomialThe Potts Model and the Dichromatic PolynomialThe Penrose Theory of Spin NetworksKnots and Strings — Knotted StringsDNA and Quantum Field TheoryKnots in Dynamical Systems — The Lorenz Attractorand selected papers Readership: Physicists and mathematicians. Keywords:Knots;Kauffman;Jones PolynomialReviews: “It is an attractive book for physicists with profuse and often entertaining illustrations … proofs … seldom heavy and nearly always well explained with pictures … succeeds in infusing his own excitement and enthusiasm for these discoveries and their potential implications.” Physics Today “The exposition is clear and well illustrated with many examples. The book can be recommended to everyone interested in the connections between physics and topology of knots.” Mathematics Abstracts “… here is a gold mine where, with care and patience, one should get acquainted with a beautiful subject under the guidance of a most original and imaginative mind.” Mathematical Reviews

Braid And Knot Theory In Dimension Four

Author : Seiichi Kamada
ISBN : 9780821829691
Genre : Mathematics
File Size : 37. 80 MB
Format : PDF, ePub
Download : 474
Read : 1083

Download Now


Braid theory and knot theory are related via two famous results due to Alexander and Markov. Alexander's theorem states that any knot or link can be put into braid form. Markov's theorem gives necessary and sufficient conditions to conclude that two braids represent the same knot or link. Thus, one can use braid theory to study knot theory and vice versa. In this book, the author generalizes braid theory to dimension four. He develops the theory of surface braids and applies it to study surface links. In particular, the generalized Alexander and Markov theorems in dimension four are given. This book is the first to contain a complete proof of the generalized Markov theorem. Surface links are studied via the motion picture method, and some important techniques of this method are studied. For surface braids, various methods to describe them are introduced and developed: the motion picture method, the chart description, the braid monodromy, and the braid system. These tools are fundamental to understanding and computing invariants of surface braids and surface links. Included is a table of knotted surfaces with a computation of Alexander polynomials. Braid techniques are extended to represent link homotopy classes. The book is geared toward a wide audience, from graduate students to specialists. It would make a suitable text for a graduate course and a valuable resource for researchers.

A Study Of Braids

Author : Kunio Murasugi
ISBN : 9789401593199
Genre : Mathematics
File Size : 34. 65 MB
Format : PDF
Download : 944
Read : 494

Download Now


In Chapter 6, we describe the concept of braid equivalence from the topological point of view. This will lead us to a new concept braid homotopy that is discussed fully in the next chapter. As just mentioned, in Chapter 7, we shall discuss the difference between braid equivalence and braid homotopy. Also in this chapter, we define a homotopy braid invariant that turns out to be the so-called Milnor number. Chapter 8 is a quick review of knot theory, including Alexander's theorem. While, Chapters 9 is devoted to Markov's theorem, which allows the application of this theory to other fields. This was one of the motivations Artin had in mind when he began studying braid theory. In Chapter 10, we discuss the primary applications of braid theory to knot theory, including the introduction of the most important invariants of knot theory, the Alexander polynomial and the Jones polynomial. In Chapter 11, motivated by Dirac's string problem, the ordinary braid group is generalized to the braid groups of various surfaces. We discuss these groups from an intuitive and diagrammatic point of view. In the last short chapter 12, we present without proof one theorem, due to Gorin and Lin [GoL] , that is a surprising application of braid theory to the theory of algebraic equations.

Top Download:

Best Books