stochastic differential equations and diffusion processes

Download Book Stochastic Differential Equations And Diffusion Processes in PDF format. You can Read Online Stochastic Differential Equations And Diffusion Processes here in PDF, EPUB, Mobi or Docx formats.

Stochastic Differential Equations And Diffusion Processes

Author : N. Ikeda
ISBN : 9781483296159
Genre : Mathematics
File Size : 47. 73 MB
Format : PDF, ePub
Download : 245
Read : 925

Download Now


Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis. A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sections discussing complex (conformal) martingales and Kahler diffusions have been added.

Stochastic Processes And Applications

Author : Grigorios A. Pavliotis
ISBN : 9781493913237
Genre : Mathematics
File Size : 45. 61 MB
Format : PDF, Mobi
Download : 204
Read : 293

Download Now


This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.

Stochastic Analysis And Diffusion Processes

Author : Gopinath Kallianpur
ISBN : 9780199657070
Genre : Mathematics
File Size : 47. 35 MB
Format : PDF, ePub, Docs
Download : 957
Read : 811

Download Now


Beginning with the concept of random processes and Brownian motion and building on the theory and research directions in a self-contained manner, this book provides an introduction to stochastic analysis for graduate students, researchers and applied scientists interested in stochastic processes and their applications.

Stochastic Differential Equations And Applications

Author : Avner Friedman
ISBN : 9781483217871
Genre : Mathematics
File Size : 49. 95 MB
Format : PDF, ePub, Docs
Download : 796
Read : 640

Download Now


Stochastic Differential Equations and Applications, Volume 1 covers the development of the basic theory of stochastic differential equation systems. This volume is divided into nine chapters. Chapters 1 to 5 deal with the basic theory of stochastic differential equations, including discussions of the Markov processes, Brownian motion, and the stochastic integral. Chapter 6 examines the connections between solutions of partial differential equations and stochastic differential equations, while Chapter 7 describes the Girsanov’s formula that is useful in the stochastic control theory. Chapters 8 and 9 evaluate the behavior of sample paths of the solution of a stochastic differential system, as time increases to infinity. This book is intended primarily for undergraduate and graduate mathematics students.

Stochastic Differential Equations

Author : Joseph Bishop Keller
ISBN : 0821813250
Genre : Mathematics
File Size : 85. 33 MB
Format : PDF, ePub, Docs
Download : 294
Read : 1119

Download Now



Diffusion Processes And Partial Differential Equations

Author : Kazuaki Taira
ISBN : UOM:39015015693271
Genre : Mathematics
File Size : 46. 87 MB
Format : PDF, ePub, Mobi
Download : 367
Read : 910

Download Now


This book provides a careful and accessible exposition of functional analytic methods in stochastic analysis. It focuses on the relationship between Markov processes and elliptic boundary value problems and explores several recent developments in the theory of partial differential equations which have made further progress in the study of Markov processes possible. This book will have great appeal to both advanced students and researchers as an introduction to three interrelated subjects in analysis (Markov processes, semigroups, and elliptic boundary value problems), providing powerful methods for future research.

Introduction To Stochastic Analysis

Author : Vigirdas Mackevicius
ISBN : 9781118603246
Genre : Mathematics
File Size : 49. 14 MB
Format : PDF, Mobi
Download : 510
Read : 258

Download Now


This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion processes. The topics covered include Brownian motion; motivation of stochastic models with Brownian motion; Itô and Stratonovich stochastic integrals, Itô’s formula; stochastic differential equations (SDEs); solutions of SDEs as Markov processes; application examples in physical sciences and finance; simulation of solutions of SDEs (strong and weak approximations). Exercises with hints and/or solutions are also provided.

Stochastic Differential Equations Backward Sdes Partial Differential Equations

Author : Etienne Pardoux
ISBN : 9783319057149
Genre : Mathematics
File Size : 67. 87 MB
Format : PDF, Mobi
Download : 626
Read : 978

Download Now


This research monograph presents results to researchers in stochastic calculus, forward and backward stochastic differential equations, connections between diffusion processes and second order partial differential equations (PDEs), and financial mathematics. It pays special attention to the relations between SDEs/BSDEs and second order PDEs under minimal regularity assumptions, and also extends those results to equations with multivalued coefficients. The authors present in particular the theory of reflected SDEs in the above mentioned framework and include exercises at the end of each chapter. Stochastic calculus and stochastic differential equations (SDEs) were first introduced by K. Itô in the 1940s, in order to construct the path of diffusion processes (which are continuous time Markov processes with continuous trajectories taking their values in a finite dimensional vector space or manifold), which had been studied from a more analytic point of view by Kolmogorov in the 1930s. Since then, this topic has become an important subject of Mathematics and Applied Mathematics, because of its mathematical richness and its importance for applications in many areas of Physics, Biology, Economics and Finance, where random processes play an increasingly important role. One important aspect is the connection between diffusion processes and linear partial differential equations of second order, which is in particular the basis for Monte Carlo numerical methods for linear PDEs. Since the pioneering work of Peng and Pardoux in the early 1990s, a new type of SDEs called backward stochastic differential equations (BSDEs) has emerged. The two main reasons why this new class of equations is important are the connection between BSDEs and semilinear PDEs, and the fact that BSDEs constitute a natural generalization of the famous Black and Scholes model from Mathematical Finance, and thus offer a natural mathematical framework for the formulation of many new models in Finance.

Simulation And Inference For Stochastic Differential Equations

Author : Stefano M. Iacus
ISBN : 0387758399
Genre : Computers
File Size : 73. 81 MB
Format : PDF, Kindle
Download : 876
Read : 1107

Download Now


This book covers a highly relevant and timely topic that is of wide interest, especially in finance, engineering and computational biology. The introductory material on simulation and stochastic differential equation is very accessible and will prove popular with many readers. While there are several recent texts available that cover stochastic differential equations, the concentration here on inference makes this book stand out. No other direct competitors are known to date. With an emphasis on the practical implementation of the simulation and estimation methods presented, the text will be useful to practitioners and students with minimal mathematical background. What’s more, because of the many R programs, the information here is appropriate for many mathematically well educated practitioners, too.

Statistical Methods For Stochastic Differential Equations

Author : Mathieu Kessler
ISBN : 9781439849767
Genre : Mathematics
File Size : 44. 24 MB
Format : PDF
Download : 898
Read : 681

Download Now


The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a spectrum of estimation methods, including nonparametric estimation as well as parametric estimation based on likelihood methods, estimating functions, and simulation techniques. Two chapters are devoted to high-frequency data. Multivariate models are also considered, including partially observed systems, asynchronous sampling, tests for simultaneous jumps, and multiscale diffusions. Statistical Methods for Stochastic Differential Equations is useful to the theoretical statistician and the probabilist who works in or intends to work in the field, as well as to the applied statistician or financial econometrician who needs the methods to analyze biological or financial time series.

Top Download:

Best Books